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What would be the criteria for statistical data to be Al-ready?

@) copilot ©

To make statistical data Al-ready, it must meet several criteria that ensure it can be effectively used for
training, validating, or deploying Al models. These criteria span data quality, structure, context, and
compliance. Here's a breakdown:

1. Data Quality

« Completeness: Minimal missing values; if missing, they should be handled or imputed appropriately.
» Accuracy: Data should reflect real-world values or measurements reliably.
« Consistency: Uniform formats, units, and naming conventions across datasets.

« Timeliness: Up-to-date data, especially for time-sensitive applications.

2. Data Structure & Format

* Structured Format: Preferably in tabular form (e.g., CSV, Excel, SQL) with clear column headers and data

types.

« Standardized Encoding: Categorical variables should be encoded (e.g., one-hot, label encoding) for
model compatibility.

« Normalized/Scaled Values: Numerical data often needs normalization or standardization for model

performance.

Provide checklist as PDF. Help prepare dataset for ChatGPT. Explain semantic clarity importance. &

Message Copilot
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Al-generated content may be incorrect

Try GPT-5
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Criteria for Al-readiness of statistical data
(according to Al ®)

. Data Quality

Completeness: Minimal missing values; if missing, they should be handled or imputed
appropriately.

Accuracy: Data should reflect real-world values or measurements reliably.
Consistency: Uniform formats, units, and naming conventions'across datasets.

Timeliness: Up-to-date data, especially for time-sensitive applications.

2. Data Structure & Format

Structured Format: Preferably in clear text-readable tabular form (e.g., CSV, Excel, JSON) or
embedded in well-structured tables within documents with-clear column-headers and.data types,
consistent rows, and no nested tables, merged cells or ambiguous formatting.

Standardized Encoding: Categorical variables should be encoded (e.g., one-hot, label encoding)
for model compatibility.

Multilin%ual clarity: If multilingual, clearly separate or'labellanguages. Use'UTF-8 encoding to

ensure the file uses standard character encoding to avoid misinterpretation of accents or symbols.

Normalized/Scaled Values: Numerical data often needs normalization or standardization for
model performance.

Consistent formatting: Dates, numbers, and categories should follow a consistent format.

3. Semantic Clarity through Metadata & Documentation

Clear Definitions: Each column name or variable should be meaningful (or have a documented
meaning using understandable categories) and include unit and scales.

Natural language compatibility: Avoid jargon-heavy or overly technical formatting unless
explained.

Dalg? PﬁO\éenance: Information about how and where the data was collected, processed and
published.

Versioning: Track changes to datasets over time for reproducibility.
Narrative context: If possible, embed the data within a short explanatory paragraph.

Example gueries: Optionally include sample questions or use cases to guide interpretation.

4. Contextual Relevance

Domain-Specific Suitability: Data should be relevant to the problem the Al is solving.

Balanced Representation: Avoid bias by ensuring diverse and representative samples.

Temporal Context: For time-series or evolving data, timestamps and sequence integrity are
crucial.

5. Legal & Ethical Compliance

Privacy & Anonymization: Personally identifiable information (Pll) must be removed or
anonymized.

Consent & Licensing: Ensure data usage complies with legal agreements and ethical standards.

Bias Auditing: Check for and mitigate harmful biases in the dataset or note any known limitations
or biases in the dataset.

6. Technical Compatibility

Machine-Readable Format: Easily ingestible by Al pipelines (e.g., JSON, Parquet, CSV).

Interoperability: Compatible with common Al frameworks (TensorFlow, PyTorch, Scikit-learn).

Scalability: Suitable forprocessing at'scale, especially for big data applications.
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So, is SDMX data Al-ready?

1) Standardised container:

‘ SDMXIM + API + formats for data transmission and
storage &

4%\ Model Context Protocol (MCP) as middleware to Al agents
- discoverable, machine-accessible and
up to date data under public domain/open license
- timeliness, accessibility, system interoperability




So, is SDMX data Al-ready?

2) Standardised content:

‘ SDMX guidelines for high-quality data modelling
- well-structured, well-identified, semantically
versioned data 2 coherence

‘ Statistical quality framework
- relevance, accuracy, credibility = trust

A Data harmonisation within the organisation and at international level
- maximal data consistency & comparability



So, iIs SDMX data Al-ready?

3) Augmented content:

4\ Descriptive metadata: clear definitions and context at all
levels, explanatory documentation (incl. for legitimate
anomalies/biases)

4\ Standardised semantic relationships between the data
beyond harmonisation: knowledge graphs (“meaning
graph”) as linked open data

4\ Ontology-based international standardization of meaning
- well understandable inter-related data
- interpretability, transparency =2 trust
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And is Al also SDMX-ready?

Al agents can connect to:

& Google announced
that this September
Data Commons will
allow importing data
in SDMX!

SDMX-
powered
dataset

catalogues
on the web

SDMX-API

What else is nheeded?

Collaboration
& governance

\\ -~ Compliancy
el with agreed

SDMX- rules
powered Returned
Model- services:
Context- visibility,
Protocol feedback &
(MCP) support

services

Picture by


https://www.freepik.com/

Annex - Capacity building for Al-readiness:
institutions, systems, individuals

Institutions (governance & legal frameworks)

e Strategic vision, data governance, innovation, data quality frameworks
* Community of practice approach

* |International collaboration, governance at global level

e Agility

Systems (infrastructure & investment)
» SDMX-based, user-centric data lifecycle management platforms, sharing, co-operation
* Workflows, pipelines, automation
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Annex - Overcoming common challenges in
implementing Al-based systems

* Find expertise for the implementation = Partner with advanced public or private organisations
* High costs (depending on model and usage), high environmental impact 2 Cost-benefit analysis

» Keeping up with quickly advancing technology = Keep solutions simply and cost-effective,
maintain and develop expertise, be ready for quick changes
* Probabilistic nature of genAl (LLMs) lead to hallucinations (making things up!)
* - Avoid misinformation to maintain credibility (zero hallucinations!)
* - Put responsibility on the user: Let the user validate/decide; choose the document,
dataset, indicator, ...
* Findability use case:

» Data availability issues (sparseness/gaps) - Combine Al with checks using SDMX data
availability

* Knowing what data users really need! - Test prototypes with real users, collect feedback
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Statistical Data and Metadata eXchange
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