

Blockchain and SDMX: Immutable data sharing for trust

SDMX Global Conference

Edward Lambe, Glenn Tice, Rafael Schmidt, Christian Schmieder (BIS) and Mario Rusev (d-fine)

Agenda

- Blockchain for Statistical Data Exchange
- Why Blockchain & SDMX Solves Real Problems
- Why now?
- Two Use Cases with Clear Business Value
- Implementation proposal
- Pilot implementation
- Discussion and feedback

Blockchain for Statistical Data Exchange

A blockchain is a decentralized, tamper-resistant digital ledger that chronologically records transactions in cryptographically linked "blocks" across a network of participants, ensuring security and transparency without relying on a central authority

- **Decentralization:** Eliminates single points of failure and control by distributing data
- Transparency & Auditability: Complete logged transaction history to participants, fostering trust
- **Security:** Data immutability and cryptographic hashing
- **Consensus Mechanisms:** Protocols like Proof-of-Work and Proof-of-Stake empower the network to validate new blocks collaboratively, ensuring unanimous agreement on a state without intermediaries
- **Common Use Cases:** Cryptocurrencies and Digital Assets, Smart Contracts, Supply Chain Management, Secure Record-Keeping **Benefits:**
- Increased Trust, Enhanced Security, Traceability and Auditability, Greater Efficiency and Cost Reduction

Why Blockchain & SDMX Solves Real Problems

Builds Global Trust:

- Provides a transparent, cryptographically secure and verifiable
 record of official statistics, enhancing credibility globally
- Strengthens international confidence through verifiably transparent data dissemination practices

Ensures Data Integrity:

- Guarantees immutability and reliability of statistics via cryptographic hashing and consensus mechanisms, establishing the foundation for evidence-based policymaking
- Significantly mitigates risks of data manipulation and maintains high-quality standards
- **Promotes Interoperability via SDMX** (Verification Recommended):
 - Blockchain can inherently incorporate SDMX standards, facilitating effective, robust and standardized international data exchange.
 - Enhances cross-system compatibility and data comparability across global statistics
 - Allows instant data validation compared to legacy public key infrastructure

Why now?

Need for Evidence-Based Policy Making:

- Policymakers depend critically on accurate, timely, and verifiably credible data to formulate robust and impactful decisions.
- Blockchain establishes an immutable chain of custody for data and metadata, guaranteeing authenticity and integrity and thereby creating a trusted foundation for mission-critical evidence-based policies.

Advances in AI and Machine Learning:

- Modern Al/ML models can process and analyze massive, complex datasets faster than ever before.
- Blockchain serves as a critical enabler for trustworthy AI by providing a pipeline of high-fidelity, cryptographically assured data, significantly reducing the risks of bias, data poisoning and unreliable outputs in automated analysis.
- Agent-Based Automation (Conceptual SDMX Integration Recommended):
 - The statistical ecosystem appears to be moving towards autonomous, agent-based systems for end-to-end data processing, validation, and dissemination.
 - An SDMX-integrated blockchain architecture, could allow streamlining machine-executable workflows by natively embedding SDMX standards, ensuring efficiency, unwavering consistency, and verifiable reliability throughout the full data lifecycle.

Two Use Cases with Clear Business Value

Two **sample** use cases to prevent the misuse of official statistics on unverified commercial or third-party platforms by cryptographically binding datasets to their origin:

Use Case 1: Immutable Version Authentication

- Cryptographic Provenance: Trace datasets unambiguously back to the official producer
- Immutable Audit Trail: Record every version and modification with tamper-proof proofs
- Digital Signature Authentication: Producers sign each dataset release, proving origin and integrity
- Real-Time Validation: Enable end users to instantly verify the authenticity via lightweight cryptographic proofs
- Standards Alignment: Support SDMX schemas and ensure GDPR compliance

Use Case 2: Redistribution Trust Framework

- *Portable Proofs*: Third-party platforms can bundle data with tamper-proof credentials
- Selective Disclosure: Producers reveal only authorized fields via zero-knowledge proofs
- Blockchain Anchoring: Immutable fingerprints of each dataset version are anchored to public blockchains
- Privacy-Preserving Revocation: Manage credential revocations without revealing user identities

Associated costs – holdings and transaction capacity for our XRPL DevNet PoC

- Metainformation is written as a memo.
- Costs are kept at minimum by using two blockchain accounts, rotating sender/receiver if required, referencing only transaction fee (assuming full control of seeds).
- Possibilities to extend the PoC for smart contracts
 (conditional transactions) or NFTs (e.g. ownership),
 inflation-linked products, real-time markets, transparent
 dashboards powered by immutable data, perpetual
 futures markets, issuance of new types of digital assets etc.

Number of Transactions vs. Total XRP (Fee = 0.000001 XRP), 12.09.2025

consonis				
Persona Feature Reasurements Feature	Our Implementation	Chainlink Approach	Ethereum Approach	Legacy Public Key Infrastructure
Verification Time	Fixed < 5s (ts validation), < 2s (query)	seconds to minutes (ts validation) < 2s (query)	several minutes (ts validation) < 4s (query)	Hours to days
Transaction fee	~\$0.000028	~\$2 to \$50	~\$0.50	~\$5.00 (Cert Authority cert)
Integration Complexity	Low (API-based)	Low (API-based)	Medium (custom integration required)	High (infrastructure)
Real-time Verification	Yes	Yes	Limited	No
SDMX Compliance	Full	Full (via metadata)	Variable	Variable

Pilot implementation demo

Discussion and feedback

Relevance and Priority

- Do you see a real need for authenticating SDMX data through blockchain in your institutional context?
- Where do you rank this use case compared to other SDMX innovations?

Feasibility and Adoption

- What technical or organizational barriers would your institution face in adopting blockchain for data dissemination?
- Would a decentralized validation model improve your trust in redistributed data?

Collaboration and Governance

- Which actors (e.g., NGOs, international organizations, private vendors) should maintain and govern the blockchain infrastructure or use a public blockchain?
- Would embedding digital signatures or metadata hashes in SDMX messages be practical or too complex?

User Perspective and Trust

- Would authenticated data from third-party platforms increase public trust in official statistics?
- How do you imagine users (e.g., journalists, researchers, businesses) would engage with blockchainauthenticated data?

Data trust survey

- Where do the threats lie?
- What technical options are preferred?
- What are the benefits of cryptographically verifiable data?
- Granularity of trust. Dataset, series, observation levels?
- Where does data trust figure in your organisational priorities?

Self-paced survey open until October 9

https://app.sli.do/event/jRrnP8ak2RNewFCkbEeouF

