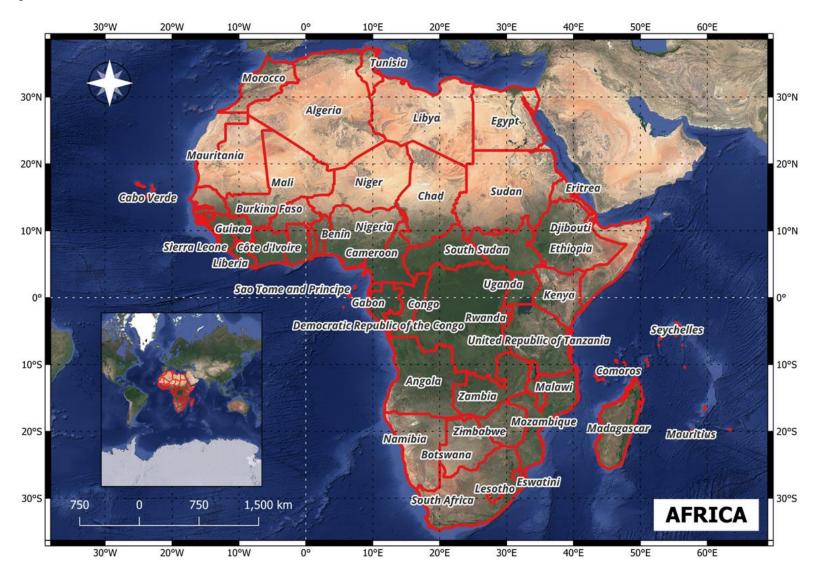


Exploratory Spatial Data Analysis of E-Government and E-Participation across Africa using SDMX data

T.P. Humanikwa

Department of Geography and Geo-Information Science Faculty of Humanities and Social Sciences


Background

- Socio-economic digitalization significantly contributes to Sustainable Development.
- However, the digital divide remains a barrier to equitable progress toward the SDGs.
- Targeted interventions in the evolving digital economy are critical for reducing inequalities (SDG10) and partnership for the goals (SDG17) digitalization is a major driving factor of globalization.
- This study combined SDMX Data (statistics) with GIS Data (Geography) for Actionable insights on the digital divide across Africa.

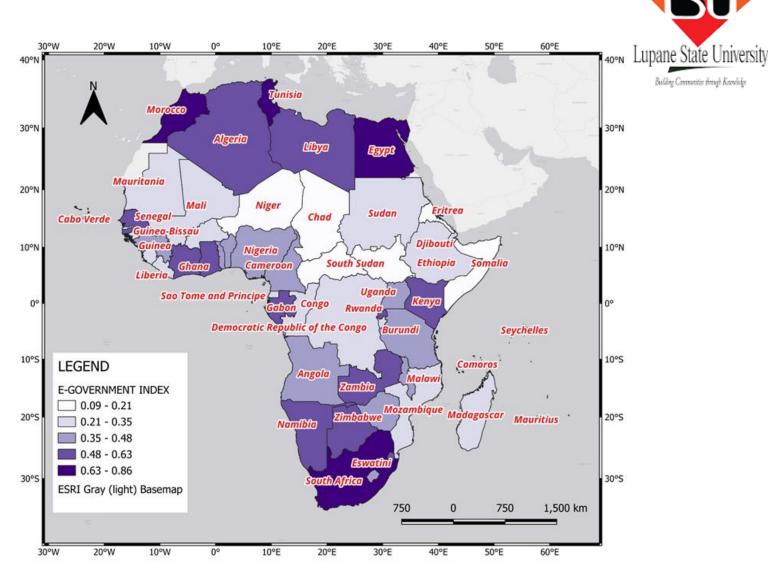
Study Area

SDMX

- SDMX (Statistical Data and Metadata eXchange) being the global language for official statistics
- It provides a standardized framework for describing and sharing statistical data and its metadata
- In this presentation SDMX is leveraged for Exploratory Spatial Data Analysis of E-Government and E-Participation across Africa
- While pre-packaged SDMX datasets (not live APIs) were used, SDMX's standardized structure meant or means:
- 1. Easy integration and interoperability with various tools and technologies (QGIS, GeoDa, Google Maps) eliminating data harmonization barriers
- Scalability and reproducibility since one can repeat the same workflow for many indicators or countries.
- 3. Repeatability as new SDMX releases come out

- 1. UN E-Government and E-Participation Data uses SDMX standards across all 54 African Countries for cross-country comparability, critical for continental analysis:
 - **'SURVEY_YEAR + COUNTRY_NAME + E-GOVERNMENT_INDEX + E-PARTICIPATION_INDEX+...'**
- 2. Implemented ATTRIBUTE JOIN between the SDMX data and ICPAC shapefiles using `COUNTRY` dimension (rather than manual cleaning)
- 3. Used the SDMX –derived values to map policy-relevant patterns and conduct Exploratory Spatial Data Analysis (ESDA)

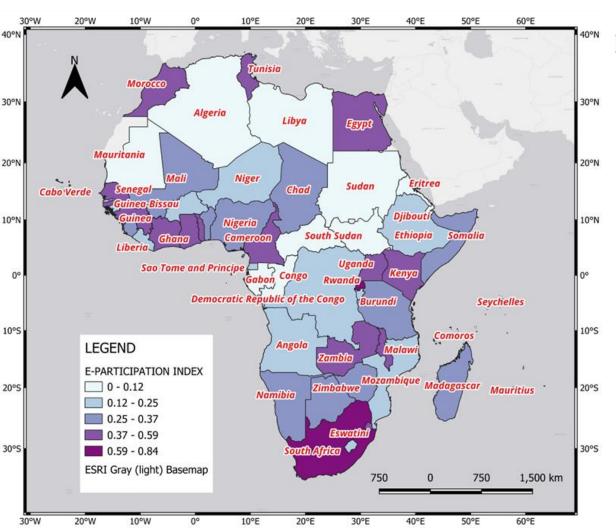
Exploratory Spatial Data Analysis (ESDA)


- ESDA is a crucial set of techniques used to describe and visualize spatial (geographic) distributions
- It unveils patterns and disparities across space that might not be immediately obvious.
- ESDA techniques implemented:
- Choropleth Mapping
- Univariate and Bivariate Global Moran's I
- Univariate and Bivariate Local Moran's I

Check Annex

E-Government Index

Lower Quantile Countries or Territories: Western Sahara, Central African Republic, South Sudan, Somalia, Eritrea, Chad, Niger, Burundi, Liberia, Gambia


Upper Quantile Countries or Territories: South Africa, Mauritius, Tunisia, Morocco, Seychelles, Egypt, Ghana, Kenya, Cabo Verde, Botswana, Eswatini

E-Participation Index

Lower Quantile Countries or Territories: Western Sahara, Comoros, Libya, Eritrea, Algeria, Sudan, Congo, Central African Republic, Djibouti, South Sudan, Gabon

Upper Quantile Countries or Territories: South Africa, Rwanda, Egypt, Cabo Verde, Ghana, Kenya, Guinea, Tunisia, Togo, Malawi, Morocco

Conclusion

Adopting SDMX is not just about data exchange; it is about making data actionable.

SDMX is the essential first step toward using advanced analytical techniques such as ESDA to create evidence-based policies for egovernance in Africa.

Therefore, SDMX-compliant data portals should include geospatial information and GIS practitioners should actively advocate for the use of SDMX standards.

The End

Thank You For Your Attention!

Any Questions?